LS-coupling and jj-coupling

Spin-orbit interaction in multi-electron atoms

- We now have two effects to consider:
- 1: Interaction between \vec{s} and \vec{l} for every electron $\vec{j} = \vec{l} + \vec{s}$
- 2: Angular part of the electrostatic interaction between the electrons

$$\begin{cases} \vec{l}_1 + \vec{l}_2 + \vec{l}_3 + \dots = \vec{L} \\ \vec{s}_1 + \vec{s}_2 + \vec{s}_3 + \dots = \vec{S} \end{cases}$$

 Both these effects have to be included in a total Hamiltonian

$$H = H_{\rm CF} + H_{\rm res} + H_{\rm SO}$$

The parts of the Hamiltonian

· The central field Hamiltonian

$$H_{\text{CF}} = \sum_{i=1}^{N} H_i = \sum_{i=1}^{N} \left[-\frac{1}{2} \nabla_{r_i}^2 + V_{\text{CF}}(r_i) \right] = \sum_{i=1}^{N} \left[-\frac{1}{2} \nabla_{r_i}^2 - \frac{Z}{r_i} + S(r_i) \right]$$

- kinetic energy of all electrons
- Coulomb attraction to the nucleus for all electrons
- the central (radial) part of the Coulomb repulsion between all electrons

The residual Coulomb Hamiltonian

$$H_{\text{res}} = \sum_{j>i}^{N} \frac{1}{r_{ij}} - \sum_{i=1}^{N} S(r_i)$$

- The angular (residual) part of the Coulomb interaction between electrons
- coupling of the angular momenta of the individual electrons
- The spin-orbit Hamiltonian

$$H_{SO} = \sum_{i=1}^{N} \xi(r_i) \, \vec{l}_i \cdot \vec{s}_i$$

the sum of all spin-orbit interactions

Filled shells

- For a filled orbital :
 - half of the electrons spin-up, the other half spindown
 - \Rightarrow contribution to S from filled shells : zero
 - all electrons with +m_l are balanced by −m_l
 - \Rightarrow contribution to L from filled shells : zero
- For the sum in H_{SO}, we only need to include the electrons outside the last closed orbital

Total angular momentum

- The interactions between electrons (angular Coulomb + spin-orbit) will couple all electronic angular momenta together
- The only thing that will stay constant is the sum of all of them

$$\vec{J} = \vec{L} + \vec{S}$$

- where

$$\left\{ \begin{array}{l} \vec{L} = \sum_i \vec{l}_i \\ \vec{S} = \sum_i \vec{s}_i \end{array} \right.$$

- A crucial point will be in which order all these momenta should be added
- That depends on in which order the perturbations are added

Ordering of the Hamiltonians

- We cannot solve the entire Hamiltonian analytically
 - perturbation theory is necessary
 - but, in which order should we take the Hamiltonians?
- · Always true:

$$H_{\rm CF} \gg H_{\rm res}$$
 and $H_{\rm CF} \gg H_{\rm SO}$

- But then, there are two possibilities:
 - $H_{\rm res} > H_{\rm SO}$
 - $H_{\rm SO} > H_{\rm res}$

$$H_{\rm res} > H_{\rm SO}$$

- In this case, the interaction between the electrons is stronger than the spin-orbit interaction in each of them
 - example with a 2-electron atom:

and

- Then, L and S couple to a total J

- This situation is called "LS-coupling"
- This approximation is valid for most atoms
 - in particular for light atoms

$$H_{
m SO} > H_{
m res}$$

- In this case, the individual coupling between the electrons, via the spin-orbit interaction, is stronger than the electrostatic interaction between them
 - example with a 2-electron atom:

- Then, j_1 and j_2 couple to a total J

- This situation is called "jj-coupling"
- This approximation has importance for heavy atoms
 - pure jj-coupling is rare
- There are often intermediate cases between LS and jj

LS-coupling

$$H = H_1 + H_{\mathrm{SO}}$$
 where $H_1 = H_{\mathrm{CF}} + H_{\mathrm{res}}$

- · Begin with:
 - $H_{\rm CF} \psi_{\rm CF} = E_{\rm CF} \psi_{\rm CF}$
 - $\rightarrow |\psi_{\mathrm{CF}}\rangle = |n_1 l_1, n_2 l_2, \dots, n_N l_N\rangle$
 - this gives the electronic configuration
- Then, calculate the fist perturbation :
 - $\langle \psi_{\rm CF} | H_{\rm res} | \psi_{\rm CF} \rangle$
 - (for the moment, we wait with the spin-orbit Hamiltonian)
 - $[H_{res}, L] = [H_{res}, S] = 0$
 - ⇒ this atomic term can carachterised by the quantum numbers L and S
 - ^{2S+1}L
 - Eigenvector : $|\psi_{\mathrm{CF}}\rangle = |\gamma L S M_L M_S\rangle$
 - (y: the electronic configuration)
 - Degenerescence in M_L and M_S
 - \Rightarrow (2L+1)(2S+1) degenerate states

How to find L and S

- Take into account :
 - Rules for addition of angular momenta
 - The Pauli principle

- For a filled shell:
 - $M_S = \sum_i m_{s_i}$ and $M_L = \sum_i m_{l_i}$
 - L = S = 0
 - no contribution from the inner shells to the global
 L and S
 - It is enough to consider the valence electrons

Electrons in different orbitals (non-equivalent)

- The Pauli principle is already taken into account
- As an example, take a 2-electron atom :
 - nl_1 , $n'l_2$ $(n \neq n')$
 - $\left\{ \begin{array}{l} L = |l_1 l_2|, |l_1 l_2| + 1, \dots, l_1 + l_2 \\ S = |s_1 s_2|, |s_1 s_2| + 1, \dots, s_1 + s_2 \end{array} \right.$
 - $(s_1 = s_2 = \frac{1}{2}) \Rightarrow S = 0 \text{ or } S = 1$
 - (singlets and triplets)
- example 1 :
 - $l_1 = l_2 = 1 \Rightarrow \text{configuration} : np, n'p$
 - L=0 or L=1 or L=2
 - ⇒ possible terms are :
 - ¹S, ¹P, ¹D, ³S, ³P, ³D

- example 2 :
 - $l_1 = 1, l_2 = 2 \Rightarrow \text{configuration} : np, n'd$
 - L=1 or L=2 or L=3
 - ⇒ possible terms are :
 - ¹P, ¹D, ¹F, ³P, ³D, ³F
- More than 2 electrons
 - a bit more complicated

Electrons in the same orbital (equivalent electrons)

- This will normally be the case for ground state configurations
- More complicated, due to the Pauli principle
- Many states become forbidden
 - we will not cover this in detail
- Example 1 :
 - $n_1 = n_2$, $l_1 = l_2 = 1 \Rightarrow \text{configuration} : np^2$
 - (the case for, for example : C, Si, Ge)
 - \Rightarrow possible terms: ${}^{1}S$, ${}^{1}D$, ${}^{3}P$
 - (other terms possible for npnp' are forbidden due to the Pauli principle)
- Example 2 :
 - $n_1 = n_2 = n_3$, $l_1 = l_2 = l_3 = 1$ \Rightarrow configuration: np^3
 - (the case for, for example: N, P, As)
 - \Rightarrow possible terms: ${}^{2}P$, ${}^{2}D$, ${}^{4}S$

Electron configuration	Terms					
ns		² S				
ns ²	¹S					
np, np^5		² P				
$n\mathrm{p}^2$, $n\mathrm{p}^4$	¹ S, ¹ D		³ P			
np^3		² P, ² D				
np^6	1S					
nd, nd9		$^{2}\mathrm{D}$				
nd^2 , nd^8	¹S, ¹D, ¹G		³ P, ³ F			
nd^3 , nd^7		² P, ² D, ² F, ² G, ² H		⁴ P, ⁴ F		
$n\mathrm{d}^4$, $n\mathrm{d}^6$	¹ S, ¹ D, ¹ F, ¹ G, ¹ I (2) (2) (2)		³ P, ³ D, ³ F, ³ G, ³ H (4) (2)		5D	
nd^5		² S, ² P, ² D, ² F, ² G, ² H, ² I (3) (2) (2)		⁴ P, ⁴ D, ⁴ F, ⁴ G		⁶ S
nd ¹⁰	1S					

More complicated cases

- More than two electrons
- · Some equivalent and some non-equivalent electrons
- Configuration mixing

Fine structure in *LS*-coupling

- Now, we add the spin-orbit term of the Hamiltonian :
 - $H = H_1 + H_{SO}$
- The atomic terms have been found :
 - ^{2S+1}L , corresponding to the ket:
 - $|\gamma LS M_L M_S\rangle$
- We now have to find the corrections given by:
 - $\langle \gamma L S M_L M_S | H_{SO} | \gamma L S M_L M_S \rangle$
- Problem :
 - H_{SO} is not diagonal in this representation
 - ($[H_{SO}, L_z] \neq 0$ and $[H_{SO}, S_z] \neq 0$)

Change of basis

- We have to change to the diagonal basis :
 - $|\gamma LSJM_J\rangle$
 - (diagonalisation of $H_{\rm SO}$)

$$|LSJM_J\rangle = \sum_{M_L,M_S} C(LSJM_J; M_LM_S) | \gamma LS M_L M_S \rangle$$

 The coefficients C(LSJM_J; M_LM_S) are the "Clebsch-Gordan coefficients"

Finding the find-structure levels

- $\bullet \quad \vec{J} = \vec{L} + \vec{S}$
- · addition of angular momenta

$$\begin{cases}
J = |L - S|, |L - S| + 1, \dots, L + S \\
M_J = -J, J + 1, \dots, J
\end{cases}$$

- For every atomic term, there are (2S+1) finestructure levels
 - (or (2L+1) if L < S)
- example 1:
 - configuration: npnp'

$$^{3}D \Rightarrow J = 3, 2, 1 \Rightarrow ^{3}D_{1}, ^{3}D_{2}, ^{3}D_{3}$$

$$^{1}D \Rightarrow J = 2 \Rightarrow ^{1}D_{2}$$

$$^{3}P \Rightarrow J = 2, 1, 0 \Rightarrow ^{3}P_{0}, ^{3}P_{1}, ^{3}P_{2}$$

$$^{1}P \Rightarrow J = 1 \Rightarrow ^{1}P_{1}$$

$$^{3}S \Rightarrow J = 1 \Rightarrow ^{3}S_{1}$$

$$^{1}S \Rightarrow J = 0 \Rightarrow ^{1}S_{0}$$

Figure 8.7 The splitting of the configuration np n'p by the electrostatic perturbation H_1 and the spin-orbit perturbation H_2 .

• example 2:

- configuration : np²
- ${}^{1}D_{2}$, ${}^{3}P_{2}$, ${}^{3}P_{1}$, ${}^{3}P_{0}$, ${}^{1}S_{0}$

Spin-orbit energies

 The energy corrections due to the spin-orbit interaction, the fine-structure splitting, can be found via the Hamiltonian

$$H_{\rm SO} = \beta_{LS} \, \vec{L} \cdot \vec{S}$$

- here, β_{LS} is a constant typical for the term $|\gamma LS\rangle$

$$\begin{split} E_{\mathrm{SO}} &= \langle \gamma \, L \, S \, J \, M_J \, | \, H_{\mathrm{SO}} \, | \, \gamma \, L \, S \, J \, M_J \, \rangle \\ &= \beta_{LS} \, \langle \, L \, S \, J \, M_J \, | \, \vec{L} \cdot \vec{S} \, | \, L \, S \, J \, M_J \, \rangle \\ &= \frac{\beta_{LS}}{2} \, \langle \, L \, S \, J \, M_J \, | \, J^2 - L^2 - S^2 \, | \, L \, S \, J \, M_J \, \rangle \\ &= \frac{\beta_{LS}}{2} \, \left[J(J+1) - L(L+1) - S(S+1) \right] \end{split}$$

Separation between two fine-structure levels

$$E(J) - E(J-1) =$$

$$= \frac{\beta_{LS}}{2} \left\{ [J(J+1) - L(L+1) - S(S+1)] - [(J-1)J - L(L+1) - S(S+1)] \right\}$$

$$= \frac{\beta_{LS}}{2} \left[J^2 + J - J^2 + J \right]$$

$$= \frac{\beta_{LS}}{2} J$$

- "Landé's interval rule"
 - This rule cam be used as a test of how well system can be described by LS-coupling

LectureNotesPhysiqueAtomique

jj∍coupling

- This applies when $H_{\rm SO} > H_{\rm res}$
 - The Hamiltonians have to be applied in a different order

$$H = H_2 + H_{
m res}$$
 where $H_2 = H_{
m CF} + H_{
m SO}$

- Remember that :
 - $H_{\rm SO} \propto Z^4$
 - $H_{\rm res} \propto Z$
 - ⇒ *jj*-coupling will be relevant for heavy atoms

$$H_2 = \sum_{i=1}^{N} \left(-\frac{1}{2} \nabla_{r_i}^2 - \frac{Z}{r_i} + S(r_i) \right) + \sum_{i=1}^{N} \xi(r_i) \vec{L} \cdot \vec{S}$$

- In this case, we have to begin with the SO-coupling for the individual electrons:
 - we form :

-
$$\vec{j}_1 = \vec{l}_1 + \vec{s}_1$$
, $\vec{j}_2 = \vec{l}_2 + \vec{s}_2 \dots$, $\vec{j}_N = \vec{l}_N + \vec{s}_N$

- The jj-coupling terms, we write as a parentheses with all the j-values
- As an example, take a 2-electron atom :
 - $l_1 = 0, l_2 = 1 \Rightarrow \text{configuration} : ns, n'p$

-
$$(j_i = |l_i - s_i|, |l_i - s_i| - 1, \dots, l_i + s_i)$$

•
$$\Rightarrow$$
 $j_1 = 1/2$ and $j_2 = 3/2, 1/2$

- ⇒ Two possibilities :

-
$$\left(\frac{1}{2}, \frac{1}{2}\right)$$
 and $\left(\frac{1}{2}, \frac{3}{2}\right)$

Fine-structure in jj-coupling

- When the terms are determined, H_{res} is added as a perturbation
 - this leads to fine-structure levels, classified by J

•
$$J = |j_1 - j_2|, |j_1 - j_2| - 1, \dots, j_1 + j_2$$

$$\left(\frac{1}{2}, \frac{1}{2}\right) \Rightarrow J = 1, 0 \Rightarrow \begin{cases} \left(\frac{1}{2}, \frac{1}{2}\right)_0 \\ \left(\frac{1}{2}, \frac{1}{2}\right)_1 \end{cases}$$

$$\left(\frac{1}{2}, \frac{3}{2}\right) \Rightarrow J = 2, 1 \Rightarrow \begin{cases} \left(\frac{1}{2}, \frac{3}{2}\right)_1 \\ \left(\frac{1}{2}, \frac{3}{2}\right)_2 \end{cases}$$

Comparison between coupling schemes

- For light atoms, LS-coupling dominates, since the SOterm is small
- For heavy atoms, the situation is often intermediate between LS and jj

- As example, take the isoelectronic sequence of np² atoms
 - C, Si, Ge, Sn, Pb
 - Look at the splittings in the first excites states (¹P and ³P)
 - C has almost pure LS-coupling
 - Pb is well described by jj-coupling
 - The others are intermediate
 - This can be seen by studying spectra

· In the case of C, the Landé rule holds